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Topological Analysis, Measurement, and Optimization  
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Abstract:  
 
This paper focuses on understanding the robustness of a supply network in the face of a disruption. 
We propose a decision support system for analyzing the robustness of supply chain networks 
against disruptions using topological analysis, performance measurement relevant to a supply 
chain context and an optimization for increasing supply network performance. The topology of a 
supply chain network has considerable implications for its robustness in the presence of 
disruptions. The system allows decision makers to evaluate topologies of their supply chain 
networks in a variety of disruption scenarios, thereby proactively managing the supply chain 
network to understand vulnerabilities of the network before a disruption occurs. Our system 
calculates performance measurements for a supply chain network in the face of disruptions and 
provides both topological metrics (through network analysis) and operational metrics (through an 
optimization model). Through an example application, we evaluate the impact of random and 
targeted disruptions on the robustness of a supply chain network. 
 
1. Introduction 

The management of disruptions in modern supply chain networks is a timely and relevant 

topic for both managers and researchers alike. A disruption in a supply chain is an unplanned and 

unanticipated event that disrupts the normal flow of material [14]. Supply chains are inherently 

vulnerable to disruptions because they are interconnected, global, and volatile [4, 20, 47, 58]. A 

disruption may initially affect or disable a few entities in the system, but its cascading effects may 

propagate to many others, disrupting an entire system [24, 25, 42, 43]. Prior research has noted 

that the cascading effects of a disruption are difficult to understand in real world settings [20]. 

Disruptions may impede the flow of people, goods, information, and funds with serious 

consequences, such as lost market share, increased cost, or even company failure [9]. However, 

disruptions do not always end in dire consequences [56-58]. The outcome can be positively 

influenced by the robustness of the supply chain. To increase robustness, it is appropriate to design 
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supply chain networks to be adaptable to different disruption scenarios (i.e., different disruption 

types and their effects) [20, 27, 28] and to have the ability to reconfigure or restructure the network 

and redistributes flows in the face of changing conditions [5, 24]. By considering multiple 

alternative networks, robustness can be enhanced by analyzing the effects of possible disruptions 

before they occur in different network configurations [5] providing valuable network robustness 

insight [22, 26] into supply chain performance [60].  

Previous research has demonstrated the efficacy of a topological approach to rewiring 

networks to enhance robustness [63, 64]. Specifically, network robustness has been evaluated 

using various topologies [53], and this work was extended with a new robustness metric [64], and 

a new topological design approach to supply chain networks [63]. One of the noted weaknesses in 

previous work in network robustness in the face of supply chain disruptions is the absence of 

network optimization techniques in robustness analysis [63]. In this paper, we extend prior 

research by developing a decision support approach that will allow supply chain managers to 

evaluate the robustness of different supply chain network designs using both a topological 

approach and an optimization approach [46, 53, 63]. In fact, there have been recent calls for supply 

chain managers and researchers alike to better understand the structure of the supply chain to 

determine the ability to adapt and recover from supply chain disruptions [24, 54]. 

In the context of this research, topology is the relative spatial placement of nodes and their 

connections or links specifically within the supply chain network (see [62] for a description and 

discussion of network topologies).  Here, we adopt the topological perspective and propose a 

framework for robustness evaluation, including metrics for robustness and analysis using 

simulation, graph analysis, and optimization. The decision support system (DSS) not only 

simulates various types of disruptions and evaluates their impacts, but also allows users to consider 
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“what-if” scenarios by modifying the structure through the rewiring of the supply chain network 

[37]. The DSS can configure and rewire a supply chain network using models supported by the 

system. Meanwhile, if network construction and rewiring models provided by the DSS are 

insufficient, a user can also provide different supply chain network topologies for evaluation. In 

doing so, managers can evaluate different topological designs for robustness against disruptions. 

In a supply network context, the relationship between the network’s topology and robustness in 

the presence of targeted and random attacks has been investigated using multi-agent model 

simulation, but the researchers did not consider rewiring nodes nor identifying nodes that would 

be most appropriate for fortification [37]. Therefore, our DSS incorporates both operational and 

topological metrics into a decision support tool to enable different ways to evaluate supply network 

robustness using context of transshipments and logistics in a supply chain. 

This research contributes in two ways: First, through simulation, the DSS allows users to 

evaluate the before and after performance of a supply chain network given various types of 

disruptions, so that the network’s robustness against these disruptions can be analyzed. These 

disruptions may be random or targeted to study the impact of disrupting a particular node in 

varying topological models. This analysis will aid in identifying supply chain nodes that should be 

fortified. Second, this research provides a combination of topological metrics for supply chain 

networks that are relatively quick to calculate yet can still accurately capture the performance of 

the network against disruptions as well as network optimization based on network topology. In 

doing so, this approach can provide both topological metrics (through network analysis) and 

operational metrics (through optimization). Topological metrics can accurately approximate the 

operational metrics, yet the former is much faster to calculate than the latter, and thus enable quick 

robustness evaluation of a large number of network designs or rewiring schemes. Therefore, from 
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a decision analysis perspective, topological metrics are quick to derive reasonable solutions to 

network rewiring in the face of disruptions. The incorporation of both the topology analyzer and 

the optimization solver allows supply chains robustness to be examined.  

Therefore, the purpose of this study is not to derive an optimal design of a network, but 

show that topological metrics perform quick and satisfactory evaluations of different designs. At 

the same time, the high similarity between topological metrics and operational metrics makes it 

possible for future studies to optimize a supply chain network based on topological metrics, which 

are much faster to calculate. This provides prescriptive analytics for supply chain robustness, so 

that users can quickly evaluate many possible topological designs for large-scale supply chain 

networks. 

The remainder of the paper flows as follows: Next, we introduce supply chain network 

topologies, their nature, attributes, and general constraints. This is followed by a description of the 

architecture of our robustness decision support system. The approach will generate a supply chain 

network based on a set of parameters including source, sink, and transshipment nodes as well as 

the number and strength of the edges connecting the nodes. After the network generator, we 

describe the scenario analyzer and disruption simulator where a disruption is introduced into the 

supply chain network, randomly or directed, based on decision maker preferences. In conjunction 

with the scenario analyzer and disruption simulator is the performance evaluator whose job is to 

provide metrics of the network. The performance evaluator provides topological metrics and 

optimized operational metrics. The topology analyzer of the performance evaluator will provide 

topological metrics such as largest connected component, characteristic path length the size of the 

largest functional sub-network, and average supply path length. The optimization solver in the 

performance evaluator considers the flow through the network by accounting for total units 
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delivered and average delivery cost. An example application of the decision support system is 

presented to illustrate the efficacy of the approach. Results are presented for both random and 

targeted disruptions, and finally, we discuss implications and conclude. 

2. Background  

2.1.Supply chain disruptions 

Supply chain disruptions are inevitable and they are varied. Disruptions are both natural 

and man-made, and they have been increasing in frequency and severity over the last decade [52]. 

Given the varied nature of disruptions and their unintended consequences [3, 43], as well as the 

fact that, unless contained, the disruptions will affect larger portions of the supply chain [3, 10, 

33], it is critical to develop robust strategies to mitigate them.  

2.2.Network science and robustness 

The decision support method presented in this paper is grounded in network science which 

is defined as “the study of network representations of physical, biological, and social phenomena 

leading to predictive models of these phenomena” [13]. There is a considerable body of knowledge 

existing for network science in many domains such as transportation, telecommunications, 

biological, social, and supply chain, and while there is maturity in the field, there is also renewed 

and growing interest [29]. We do not present a comprehensive review of the literature, but we do 

draw from select domains and projects to support our research questions and direction. For 

example, researchers have used network science to draw insights into network disruptions in road 

networks for emergency services [40], telecommunication networks [23], spatial decision support 

systems and wireless communications [44, 45], and supply chain networks [12, 18, 31, 58]. 
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Within the domain of network science, robustness has been studied in many fields such as 

finance [21], transportation [50], and group decision making [38]. Bruneau et al. [6] define 

robustness as the strength of a system, which is measured by its ability to resist damage or loss of 

functionality as a result of an event. Robustness is one component that contributes to a system’s 

resilience [6, 65], specifically by fostering pre-event preparedness [66], and is particularly 

interesting in evaluating networks’ ability to absorb disruptions [50]. In a supply chain context, 

robustness is the ability to maintain normal operations under different scenarios including the event 

of a disruption [5, 27, 28]. A supply chain network that is robust should compensate for disruptions 

with minimal impact in performance. One way to enhance the robustness of a supply chain network 

is to investigate its ability to maintain operations in the event of disruption by altering the structural 

level of the network. Therefore, in order to have a robust supply chain network, weak points or 

vulnerabilities in the system should be identified before the disruption occurs [5]. 

2.3.Supply network topology  

Supply chain networks are dynamic, being made up of interacting entities with different 

roles, such as raw material suppliers, manufacturers, logistics, warehouses, retailers, customers, 

etc. Because supply chain networks involve collaboration of partners sharing real-time, and often 

incomplete information, some have argued that these networks are complex adaptive systems 

where they may change dynamically causing the networking problems to be ill structured and 

behavior based, thus making them difficult to be solved by analytical tools such as mathematical 

programming [36, 51]. Although entities vary in manifestation and application domains, we refer 

to them generically as network nodes. Topology and robustness have long been studied for their 

interplay in mitigating attacks and failures [1, 8, 17, 37, 51]. A topology shows how the nodes in 

a network are connected together by edges or links, in other words, the topology is the structure of 
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the network. For example, in an (ER) random network model, new edges between nodes are added 

randomly. Many real-world networks (e.g. social networks and some supply chain networks) have 

scale-free topologies [2, 38], where the edges are added based on preferential attachment: high-

degree nodes are more likely to be connected. Scale-free networks are very robust to random 

failures, but are fragile to targeted attacks [37]. Additionally, supply chain networks may exhibit 

small-world (commonly referred to as six-degrees of separation) characteristics where the nodes 

are locally well connected [15, 59]. Small-world networks share similar properties to random 

networks in regards to robustness to failures [37]. Thus, robustness will vary depending upon the 

model of topology.  

Many previous topological robustness studies assumed that nodes in networks are 

homogeneous in the sense that the different roles of nodes are not considered. Yet, supply chain 

networks are essentially heterogeneous with different types of nodes with distinct roles, such as 

supply nodes, and distribution (or transshipment) nodes. As a result, when helping managers 

evaluate the robustness of various network topologies and redesign the supply chain network in 

cases of disruptions, we need to take node heterogeneity into consideration [63, 64]. In considering 

the topology of the supply chain network, we are mainly focusing on the logistic nature of the 

network, and note that supply chain networks are even more complex dealing with interpersonal, 

economic, and sourcing relationships. However, as per [3], the logistic nature of supply chains 

remains an area of importance. 

It should be noted that supply chain networks are inclusive all the way from raw materials 

to finished goods and have many stakeholders and multiple tiers. In this research, we focus on the 

downstream components of a supply chain network related to the distribution of goods. In this part 

of a supply chain network, manufacturers, distributors and retailers are closely connected and 
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supply chain managers often have high levels of knowledge and control over the network’s 

structure. Given the nature of these supply chain networks, we limit the locus of control of topology 

to nodes. Prior research has investigated the effects of modifying links in the network to address 

disruptions (link-based or link-focused modeling) [40, 50] as well as node-based modeling [45, 

61]. While supply chain managers are aware of links in their networks, such as road, rail, and air 

between the nodes, they are more often concerned with the health and well-being of the nodes in 

their networks such as suppliers, distribution centers, and warehouses [7, 9, 32, 54]. Even in supply 

chain network optimization problems, assumptions are often made that do not reflect the reality of 

actual supply chains. For example, there may not always be paths from source to sink nodes [35] 

due to transshipment node failures, or if a node fails in the supply chain, the network may not 

simply be rerouted around that node because that specific node is essential to adding value to the 

product or information traversing the chain. Therefore, we focus on node-centric modifications to 

improve or balance supply chain network robustness.  

3. Architecture of a Decision Support Approach for Robustness Analysis 

We adopt a framework for spatial decision support systems (SDSS) proposed by Snediker 

et al [48]. This framework, shown in Figure 1, aims at helping managers assess the robustness of 

supply chain networks with different topologies when exposed to disruptive events, so that they 

can make informed decisions about their network design. The main components of the system are 

the network generator, scenario analyzer, disruption simulator, performance evaluator and a 

network database. A user provides the network parameters and disruption scenarios (data input) to 

the scenario analyzer (impact assessment), which in turn invokes the network generator (scenario 

generation). The network generator creates a supply chain network based on the input provided, 

and stores it in a network database. The scenario analyzer also notifies the disruption simulator to 
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simulate disruption scenarios according to users’ requirements. The scenario analyzer passes the 

disrupted network to the performance evaluator (measurement comparison & testing), which can 

provide two types of performance metrics: one is derived only from network topologies and the 

roles of nodes; the other is based on the optimization of supply flows across the network. Lastly, 

the user may modify the supply chain network based on test results (impact exploration and 

disruption mediation).  

 

Data Input

Scenario Generation Impact Assessment

Measurement 
Comparison & Testing Impact Exploration Disruption Mediation

 

Figure 1. Snediker et al. [48] Framework for SDSS Network Scenarios 

3.1. The network generator 

Given a set of parameters, this component generates a supply chain network as specified 

by a user. The inputs include both topological parameters and attributes of individual elements in 

the network (as summarized in Table 1). We will use the simple supply chain network in Figure 2 

as an example to illustrate the input parameters. The network has three types of nodes: warehouses 

(W), distribution centers (DC) and retail stores (S). Warehouses act as supply nodes, stores are 

demand nodes, and distribution centers are trans-shipment nodes. To build the network, one needs 
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to specify the number of nodes for each type, the number of edges, and what is the network 

topology. In addition, each node is associated with two types of capacities: (1) the supply/demand 

(S-D) capacity denotes how many goods can be provided or consumed by a node. A supply node 

has a positive S-D capacity as it provides goods to the network; a demand node consumes goods 

provided through the network and has a negative S-D capacity; and a transshipment node has a 

zero S-D capacity; (2) the throughput capacity represents how many units of goods a node can 

transfer to other nodes. In other words, it is the capacity of a node to transfer goods it received 

from upstream suppliers to downstream customers. Users can specify the S-D and throughput 

capacities of a node on the basis of its type, designated role, location, etc. The capacity of a node 

may be increased at extra cost. Figure 2 illustrates an example of a supply chain network.  

 

Figure 2. A simple supply chain network with 3 types of nodes: warehouses (W), 
distribution centers (DC) and stores (S). 

  

As for edges, those between warehouses and DC/stores are uni-directional to denote the 

one-way flow of goods, while those between DCs and stores bi-directional. Edges are also assigned 

weights that represent the cost of transporting goods over a link in the physical world. The weight 
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could depend on the geographical distance between two nodes, the means of transportation (by 

road, air, or sea), etc. Higher edge weight denotes higher transportation cost on the edge. 

The network generator supports various strategies to construct networks with many 

different topologies. It also allows a user to modify the topology of an existing supply chain 

network through various adjustment strategies.  It can generate networks with standard models, 

such as ER-random, scale-free, and small-world. More importantly, it also allows users to state 

specific requirements when constructing a supply chain network [59]. For example, the user can 

specify that each demand node connects to at least two distribution nodes, or that a supply node 

can handle no more than 10 distribution nodes. Further, the design of a supply chain network often 

faces some practical constraints. In some supply chain networks, a demand node may have to 

connect to a distribution node that is geographically more proximate than another distant 

distribution node. Thus, this generator also makes it possible to enforce an upper limit on the 

geographical distance that an edge can span in a supply chain network, so that the resulting network 

has fewer long-distance hops and reflects a more realistic supply chain. Table 1 summarizes the 

input and output parameters of our decision support system. It is worth noting that supporting 

network models listed in Table 1 are not comprehensive nor are real-world supply chains limited 

to those listed. For example, it is rare to find a supply chain network that is totally random. 

However, by allowing users to access these models, the system gives decision makers options for 

what-if analysis without being overwhelming. However, as described in our literature review, the 

models and parameters listed in Table 1 are most salient and pertinent for supply chain networks. 
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Table 1. Input and Output Parameters 

Input 

Nodes 

Numbers of supply, distribution, and demand nodes 

Supply/demand capacity  

Throughput capacity  

Geographical location (if available) 

Edges 

Number of edges 

Directions of different types of edges 

Weights of edges (if available) 

Parameters 
related to network 
topologies 

Scale-free 
Degree preference exponent (r) 

The number of initial nodes 

ER-random Connection probability 

Small world 
Lattice pattern 

Rewiring probability 

Prioritized attachment 
for supply nodes 

Numbers of edges each type of 
node can have 

Degree preference parameter 

Random Localized 
Rewiring 

Parameters for the original 
network 

Rewiring probability 

Hierarchical Numbers of edges each type of 
node can have 

Maximum  

connection 
distance 

Geographical distance (kilometers or miles)  

or graphical distance (number of hops) 

Disruption 
models 

Elements to be 
disrupted Node or/and edge 

Disruption type 
Random, targeted (with the 
metric for importance), mixed, or 
user-defined. 

Number of elements to be disrupted 
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Output 
Supply chain 
network topology 

Network adjacency matrix and the role of each node. 

Topological performance metrics (size of the largest 
functional sub-network and average supply path length). 

Supply chain 
network 
performance 

Total units delivered (TUD) 

Average delivery cost (ADC) 

Flow of goods on each edge 
 

3.2. The Scenario Analyzer and the Disruption Simulator 

The scenario analyzer lies at the center of our architecture. It receives inputs such as supply 

chain network topologies and settings for simulating disruptions and other scenarios. The analyzer 

will invoke the disruption simulator to simulate disruptions to the supply chain network. The 

disruption simulator receives the disruption settings as input, such as the type of disruption 

(random/targeted/mixed/user-defined), the number of nodes/edges to be removed, and the strategy 

for selecting important targets, etc. Then it simulates these disruptions by removing nodes or edges 

from the network. The output of the disruption simulator is the disrupted network. 

 When disruptions are random, each node and/or edge has the same failure probability. 

These random disruptions might be accidental such as earthquakes, fires, or power outages. They 

may be unexpected economic events like the dot com bubble burst or a bankruptcy. In order to 

simulate these random disruptions, we randomly remove nodes or edges from the supply network. 

When a node is removed, the connected edges to that node are also removed. In contrast to random 

disruptions, targeted disruptions are directed at critical system entities such as network hubs. The 

criticality of a node may be measured by its importance in a network through measures such as 

degree, closeness, and betweenness [39]. In addition to random and targeted disruption scenarios, 

users may manually define how to remove nodes or edges from a supply chain network. 

3.3. The Performance Evaluator 
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As its name suggests, the performance evaluator is responsible for evaluating the 

performance of a supply chain network after disruptions. It interacts with two other modules, each 

providing one set of performance metrics: the topology analyzer focuses on network topologies 

and generates topological metrics; the optimization solver formulates and solves an optimization 

problem to find operational metrics based on the optimal supply flows. We will illustrate how the 

two sets of performance metrics relate to each other in the case study later. After disruptions, the 

performance of a supply chain network usually deteriorates. The less its performance deteriorates, 

the more robust the supply chain network is. By comparing the values of a network’s performance 

metrics before and after a disruption, the performance evaluator helps users gain insights into the 

network’s robustness against disruptions. 

3.4. The Topology Analyzer 

Topological metrics have been used by many network studies to evaluate the robustness of 

a network [37]. The most important include the size of the largest connected component, clustering 

coefficient, and characteristic path length [37, 51]. The largest connected component of a network 

is the largest sub-network where there exists a path between any pair of nodes. The characteristic 

path length is the average shortest path length between all pairs of nodes. Clustering coefficient 

captures the nature of small-world networks in that the probability of the nearness of two nodes is 

related to the nearness of a third to the first two [37]. In the context of supply chain networks, 

topological metrics can also be good indicators of network performance [26]. 

Taking the topology of a supply chain network (weighted or un-weighted) and the role of 

each node in the network as inputs, this approach provides two topological metrics that extend the 

two aforementioned topological metrics [63, 64]. The first metric is the size of the largest 

functional sub-network (LFSN). A functional sub-network is also a connected component but it 
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must have at least one supply node (e.g., a warehouse) in it. The larger the size of the LFSN is, the 

better the connectivity of the network is. The second metric is the average supply path length [63]. 

Instead of finding the path length between all node pairs as in characteristic path length, the 

average supply path length only considers shortest paths between all supply-demand nodes pairs, 

because these paths are more important for supply flows in a network. The smaller the value is; 

the easier supplies can be delivered from supply nodes to demand nodes. For example, in the 

supply chain network in Figure 3, the largest functional sub-network contains 4 nodes: W1, DC1, 

S1, and S2. The average supply path length is (2+1)/2=1.5 as only S1 and S2 can access a supply 

node (with shortest path length 2 and 1 respectively). 

 

Figure 3. A sample supply chain network. (W for supply nodes, DC for distribution nodes, 
S for demand nodes, and directions of edges represent the flow of goods.) 

 

Our topological metrics actually serve as a heuristic/approximation to operational metrics 

that can only be obtained after NP-hard optimization. The two topological metrics can be 

calculated in polynomial time. For example, finding the largest functional sub-network can be 

done through a breadth-first or depth-first search with a worst-case time complexity of O(|E|+|V|), 

where |E| is the number of edges and |V| is the number of nodes in the network. Finding the 

characteristic path length has a worst-case time complexity of O(|V|3) when using the Floyd–

Warshall algorithm [21], or O(|E||V|+|V|2log|V|) when using the Dijkstra’s algorithm [16]. Since a 

supply chain network often has many more demand nodes than supply nodes, the complexity for 

calculating the average supply path length can usually be further reduced. 
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3.5. The Optimization Solver 

While topological metrics are easy to calculate, they only consider the network topology and 

omit many real-world constraints that supply chain networks usually face, such as capacities of a 

supply node and a distribution node. They are also based on concepts from graph theories and may 

be unintuitive to some supply chain network managers. Thus, the optimization solver provides 

operational metrics – another set of performance metrics based on the flow optimization in a 

supply chain network.  

Total units delivered (TUD) is the total number of units of a good delivered from supply nodes 

to demand nodes in the network. It reflects whether demand nodes in the supply chain network 

can obtain their requisite supplies. It is not equal to the total supplies nor total demand. Only 

demand that is met by supplies through a supply chain network will count as TUD. A higher TUD 

means a superior performance. For example, in the supply chain network in Figure 3, stores S1 

and S2 can access goods from warehouse W1, but S3 has no access to any warehouse. Thus, TUD 

is the number of goods transported from W1 to meet the total demand of S1 and S2. 

In contrast to TUD, Average Delivery Cost (ADC) measures how much the delivery of one 

unit of goods costs. Clearly, a lower delivery cost indicates better performance of the supply chain 

network. In our experiment, we calculated TUD and AUC for all the whole network, even though 

it may be fragmented into isolated sub-networks after disruptions.  

While there are often many ways to deliver goods through a supply chain network, finding the 

optimal one with the lowest total cost can be modeled as a capacitated transshipment problem [55], 

which can be solved using flow optimization techniques.  

We formalize the flow optimization of a supply chain network as the following integer 

programming (IP) model (Table 1 summarized the key parameters in the model):  
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Model 1: Flow optimization of the supply chain network 
Min  TotalCost=c(i,j)*f(i,j) + cadd(i)*add(i) 
Subject to   (1) ∑ 𝑓𝑓(𝑖𝑖, 𝑗𝑗)𝑗𝑗 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) + ∑ 𝑓𝑓(𝑗𝑗, 𝑖𝑖)𝑗𝑗 , ∀ 𝑖𝑖 
       (2) ∑ 𝑓𝑓(𝑖𝑖, 𝑗𝑗)𝑗𝑗 ≤ 𝑡𝑡𝑠𝑠(𝑖𝑖) + 𝑎𝑎𝑠𝑠𝑠𝑠(𝑖𝑖), ∀ 𝑖𝑖 
                   (3) 𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 0, if node i and j are not direct neighbors in the network. 
           (4) 𝑓𝑓(𝑖𝑖, 𝑗𝑗) integer, ∀ 𝑖𝑖, 𝑗𝑗 

Where: i and j denote nodes in the network;  
f(i,j): flow on an edge or link from i to j 
c(i,j): the cost of transporting one unit of goods from node i to node j 
sdc(i): supply/demand capacity of node i 
tc(i): throughput capacity of node i  
add(i): the extra throughput capacity that node i adds 
cadd(i): the cost for node i to add one extra unit of goods to its throughput capacity 

 
The objective function of the IP problem is the total cost of goods delivery for the supply 

chain network. f(i,j) is the volume of goods transported from node i to j.  Constraint 1 enforces the 

input-output flow balance at all nodes as the total output from node i cannot exceed the sum of 

node i’s capacity sdc(i) and the total input to i. Constraint 2 enforces the limit on throughput 

capacity of any node. The total flow through node i to other nodes cannot exceed its throughput 

capacity tc(i). A node can also add extra throughput capacity add(i), with the cost of cadd(i) per 

unit of extra capacity. By allowing extra throughput capacity we can ensure that, as long as the 

total supply is greater than the total demand, and the network remains connected, there will be a 

feasible solution to the IP. Constraint 3 relates to the network structure: if nodes i and j are not 

direct neighbors in the supply chain network, they cannot forward any goods to each other directly. 

This formulation can be solved with a standard optimization package. Also, this model will have 

no feasible solution if the supply chain network or sub-network does not even have any supply 

node, as there will be no flow of supplies in such networks. It does not guarantee to meet the 

demand of every demand node either. In other words, after disruptions, even though a demand 

node is still somehow connected to a supply node, its demand may not be completely satisfied due 
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to the loss of supply nodes. Similarly, a supply node may end up with excessive supplies that 

cannot be delivered to demand nodes. 

It is worth noting that our work focuses on topological designs. Thus, the aforementioned 

IP model is about optimization at the strategic level. Similar to previous work on strategic-level 

optimizations, the IP model does not consider specific rules or constraints, such as sourcing, 

inventory management, transportation mode/carrier selections [49]. 

4. Implementation 

The architecture has been implemented in a decision support system. Graph analysis and 

visualization are handled by the Java Universal Network/Graph Framework [41]. The optimization 

solver is based on GAMS. It takes input files, solves the IP problem, and returns the optimization 

results. In addition, the network generator also integrates a program that retrieves the geographical 

distance between two U.S. street addresses or zip codes. Distance retrieved by the program is used 

to assign the weight of edges, and to inform the topological design or rewiring of supply chain 

networks. Figure 4 shows a screenshot of the network graph as rendered by the system. It shows 

how warehouses (gray squares), distribution centers (white squares), and retail stores (white 

circles) are connected. An edge shows the direction (denoted with arrows) and the amount (with 

line width) of supply flows between two nodes. More information of nodes or edges will show in 

a pop-up menu when right-clicking them. In addition to the values of supply chain network 

performance metrics before and after simulated disruptions, Figure 4 only shows very basic 

information of the supply chain network being analyzed. It includes a snapshot of the network 

topology, node information, the direction and amount of supply flows.  
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Figure 4. A screenshot of the network graph of the supply chain 

The primary motivation to develop the decision support system as described is to demonstrate a 

reusable framework that may be adapted by decision makers to analyze networks that are varied 

in structure and complexity. Specifically, by modifying the network through a topological 

approach, decision makers can quickly evaluate the network robustness under various scenarios 

without determining the optimal solution for each scenario, similar to the strength of heuristics for 

quickly locating the global optimal solution region in complex non-linear optimization problems. 

5. Example Application  

5.1.Settings 

To demonstrate the applicability of our approach, we use an example of a west coast, 

retailer distribution network to show how the system can help a firm’s managers to evaluate the 

robustness of different supply chain network topologies against disruptions. The example 

application demonstrates how information provided by the system can help a decision maker 

evaluate the robustness of a real-world supply chain network against disruptions, and how 
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adjustment to the network can change its robustness. However, although the example network has 

a degree distribution similar to those of scale-free networks, the goal is not to show a scale-free 

network’s robustness against random or targeted disruptions. The network consists of 184 nodes: 

2 warehouses, 7 distribution centers (DCs), and 175 stores. The edges of the network are directed 

and weighted. To make the case study more realistic, we do not allow the flow of goods from 

stores to warehouses, or from DCs to warehouses. The geographical distance (in miles) between 

two nodes will serve as the edge weight if they are connected. Table 2 lists key parameters for the 

example application of the retail supply chain network. 

Table 2. Key parameters for the example application of a retail supply chain 

network. 

Parameter Description Parameter values for the case 
study 

sdc(i) Supply/demand capacity of a 
warehouse, DC or Store 

1000 for warehouse; 

0 for DC; –10 for store 

tc(i) Throughput capacity of a warehouse, 
DC or Store 

1000for Warehouse; 

300 for DC; 100 for store 

c(i,j) Cost of transporting goods  $ 0.01 per mile per unit  

cex(i) Cost of using extra throughput 
capacity at any node  

$ 0.10 per unit 

dmax Maximum rewiring distance  300 miles 

 

Using the west coast retailer’s supply chain network preferences, we simulate the following 

distribution network: First, two warehouses are interconnected. Second, distribution centers are 

randomly connected to either the first or second warehouse and to two other DCs. Third, each store 

is preferentially attached to a DC(s) within 300 miles. Lastly, 10% of all stores may connect 
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directly to a warehouse. Figure 5 shows the degree distribution of the network. The network does 

not feature a perfect power-law degree distribution. Instead, it is a combination of two power-law 

degree distributions with some hierarchical features that lead to the polarization in node degrees. 

Stores that are lower in the hierarchy have degrees ranging from one to three and follow the power-

law distribution (shown on the left in the figure). Alternatively, DCs and warehouses are generally 

higher in the hierarchy with degrees greater than 12. These warehouse and DC nodes also reflected 

in a power-law distribution (shown on the right in the figure). Although the network lacks nodes 

with degrees in between those of stores and DCs/warehouses, it still features a small number of 

hub nodes and many low-degree nodes, which is a key feature of scale-free networks. Figure 5 

shows the complementary cumulative degree distribution of the west coast retailer’s distribution 

network for our example application. 

 

Figure 5. The complementary cumulative degree distribution of the retailer’s 
distribution network  

As an example of getting different topologies of the distribution network, we let the DSS 

adjust the topology of the network using random localized rewiring (RLR) [64]. It represents a 

preemptive strategy to adjust supply chain network structures to improve robustness against 

possible disruptions. Basically, RLR iterates through all edges in a supply chain network, 

disconnects an edge from one of its nodes with a rewiring probability pr, and reconnects the empty 

end of the edge to another node within the rewiring radius dmax. A higher pr value leads to more 
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rewiring, while a lower dmax imposes more control over the rewiring process. RLR represents a 

heuristic strategy to adjust the topology of a supply chain network. The full rewiring algorithm 

was discussed in [64]. In the context of supply chain networks, rewiring represents the adjustment 

of supply delivery between entities in a supply chain network. For example, a retailer who used to 

receive goods from a DC switches to another nearby DC. In this case study, we used two different 

rewiring probabilities pr=0.25 and pr=0.5, and set rewiring radius dmax=300 miles. 

 To evaluate the robustness of the original and rewired distribution networks, we simulated 

random and targeted disruptions. Adhering to previous research [1], for targeted disruptions, node 

degree was used to indicate the importance of a potential target node, because node degree is 

simpler to determine. Because of their multiple connections, high-degree nodes often have high 

visibility [30]. Centrality measures (e.g. betweenness, closeness, and eigenvector centrality) are 

more difficult for attackers to obtain because they require greater knowledge of the network’s 

topology. For both types of disruptions, we removed 3 DCs (out of 7), one at a time between each 

observation. After one DC is removed, the degree of each node is updated. For targeted disruptions, 

we removed the highest-degree DC left in the network. During the process of node removal, we 

tracked the two sets of performance metrics for the original and rewired networks. Figure 6 shows 

the logic of the simulation experiments. Figure 7 illustrates the networks’ responses to random 

disruptions (with an average of 30 runs). Figure 8 shows the networks’ responses to targeted 

disruptions (with an average of 30 runs). 
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Figure 6. The flow chart of the simulation experiments. 
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(a) Size of the largest functional sub-network 

(LFSN) 

(b) Average supply path length 

  

(c) Total units delivered (TUD) (d) Average delivery cost (ADC) 
 

Figure 7. Various networks’ responses to random disruptions  
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(a) Size of the largest functional sub-network 

(LFSN) 

(b) Average supply path length 

  

(a) Total units delivered (TUD) (b) Average delivery cost (ADC) 

 

 

Figure 8. Various networks’ responses to targeted disruptions  
 

5.2. Results  

The performance of the original and the rewired distribution networks (with two different rewiring 

probabilities) under both random and targeted disruptions are shown in figures 7 and 8.  The 

horizontal axis shows the number of removed DCs, and the vertical axis the performance metrics. 

For each disruption scenario, two sets of performance metrics (i.e., four metrics) are illustrated. 

For the original distribution network (pr=0), its size of the LFSN and TUD deteriorate very fast, 
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especially in targeted disruptions, because the network is easily fragmented by disruptions and 

many stores’ access to warehouses is lost. Meanwhile, for those stores that can still access supplies, 

the network is able to maintain low average path length and ADC in both types of disruptions, 

because nodes in the network generally follow a hierarchical structure. Stores connect only to DCs 

or warehouses and not to each other. Therefore, if a store still has access to warehouses after 

disruptions, it means the closest warehouse is either an immediate neighbor or two hops away from 

the store. This is more obvious when 3 DCs are removed in targeted disruptions: the values of 

average supply path length and ADC actually decrease, because the possible long paths between 

supply and demand nodes have been eliminated after the removal of high-degree DCs. 

Meanwhile, rewired networks perform better in terms of size of the LFSN and TUD. With 

a higher pr, the two metrics also have greater values. For instance, in the rewired network with 

pr=0.5, even after 3 important DCs fail, the distribution network only sees a drop of 6% in the size 

of the LFSN and a drop of 11% in TUD. As a trade-off, the average supply path length and delivery 

cost are higher than for the original network. This is because the distance between warehouses and 

stores is longer in this rewired network than in the more hierarchical original network. Note that 

the two rewiring probabilities are simply examples demonstrating the efficacy of the DSS. The 

choice of the two probabilities was to show the power of the topological component of the DSS 

compared to the traditional operational optimization and not to compare different distributions. 

Admittedly, rewiring a supply chain network may dramatically increase costs. Thus, as in any 

simulation, the closer to real world values and probability distributions a decision maker can get, 

the greater the accuracy our DSS can provide in evaluating supply chain robustness. See [63, 64] 

for comparative analyses of re-wiring given different levels of risk probabilities. 
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As Figures 7 and 8 suggest, comparing the robustness of these distribution networks using 

topological and operational metrics leads to similar conclusions. There is actually a high level of 

similarity between performance metrics provided by the topology analyzer and metrics from the 

optimization solver. In fact, as Table 3 shows, the trend in the size of the LFSN is very similar to 

that in TUD, and average supply path length resembles ADC. In other words, the topological 

metrics, which can be calculated in polynomial time, can closely approximate operational metrics, 

which are usually NP-hard optimizations. Thus, the topology analyzer can be used by managers to 

get a quick yet relatively accurate estimate of the robustness of a supply chain network. The 

existence of both the topology analyzer and the optimization solver is a desirable feature: the 

topology analyzer is handy when the manager needs to evaluate a very large supply chain network 

in a real-time fashion or compare a large number of possible topological designs of a supply chain 

network; the optimization solver is more appropriate when an in-depth analysis of a supply chain 

network’s robustness is necessary. 

5.3. Discussion  

Such analysis can help a manager better understand this tradeoff in rewiring distribution 

networks. In the case of supply chain applications such as the example presented in this paper, re-

wiring represents the adjustment of supply delivery between entities in a supply network. To find 

the appropriate topology for a distribution network, a manager has to balance performance metrics 

based on the firm’s potential disruption scenarios, robustness requirements, and financial 

considerations. Consider the results in Figure 7, a manager faced with a prospect of two targeted 

disruptions might observe that when pr =0.5, TUD is 268 units more than if pr =0.  Thus, assuming 

a profit of $10 per unit, the profit increases by $2,680. On the other hand, the delivery cost goes 

up by $0.80 per unit for all the 1,633 units delivered, adding $1,306 to the total cost. Hence, there 
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is a net benefit of $1,374 to rewire the network with pr =0.5. Other disruption cases may be 

similarly evaluated. Table 3 summarizes the results of the example application, comparing the 

performance metrics of random and targeted disruptions on the original and rewired supply chain 

networks. It is worth noting that robustness can mean different things to different people and is 

very context dependent making it very hard to generalize. To one manager, it could mean 

maximizing units delivered at any cost, while to another it may mean attaining the highest rate of 

delivery subject to a maximum cost. In practice, it is mostly achieved, not in isolation, but by 

striking a balance between conflicting priorities usually through trial and error. Our interactive 

DSS tool makes this task easier for the manager to accomplish by allowing her to consider 

alternative scenarios quickly and easily, and then selecting the best topology that satisfies her 

constraints.  Our contribution lies in developing a methodology for understanding robustness in 

supply chain networks and demonstrating how it can be applied in real world settings.  

Table 3. Comparing the two sets of performance metrics. 

Disruption 

scenarios 

Distribution 

networks 

Correlation coefficient (p-values) 

Size of the LFSN vs TUD 
Average supply path 

length vs ADC 

Random 

disruptions 

Original  0.9925 (0.0075) 0.9913 (0.0087) 

Rewired (Pr=0.25) 0.9993 (0.0007) 0.9944 (0.0056) 

Rewired (Pr=0.5) 0.9989 (0.0011)  0.9955 (0.0045) 

Targeted 

disruptions 

Original  0.9997 (0.0003) 0.9528 (0.0472) 

Rewired (Pr=0.25) 0.9999 (0.0001) 0.9969 (0.0031) 

Rewired (Pr=0.5) 0.9993 (0.0007) 0.9969 (0.0031) 
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6. Conclusions 

Supply chain networks are highly vulnerable to disruptions [20]. Recognizing the 

importance of topology as one of the key determinants for supply chain robustness, we proposed 

a DSS to evaluate the robustness of different supply chain network topologies against disruptions. 

The architecture consists of a scenario analyzer, a network generator, a disruption simulator, and 

a performance evaluator. The network generator produces different topologies using various 

network building and adjustment strategies. The disruption simulator applies different types of 

random and targeted disruptions to a supply chain network. The robustness of a supply chain 

network against disruptions can be measured by two modules in the performance evaluator: (1) 

the optimization solver finds the optimal way to route goods through pre- and post-disruption 

supply chain networks by solving an optimization model based on an IP formulation. The 

optimization outcome provides key operational metrics such as total units delivered, average 

delivery cost, and the flow of goods between nodes. (2) The topology analyzer efficiently finds 

performance metrics through network topologies and the heterogeneous roles of nodes. The 

different roles of supply chain nodes are modeled to represent real world supply chains. Thus, the 

DSS’s ability to provide the two sets of performance metrics further improves its power in 

evaluating different topological designs of supply chain networks, and those networks’ abilities to 

perform at a desired level in the presence of disruptions. 

It is desirable to have both topology analyzer and the optimization solver within a decision 

support tool like the one we proposed for two reasons: First, it offers two different use cases for 

managers to evaluate the performance of their distribution networks against disruptions. The 

topology analyzer useful when a manager needs to evaluate the post-disruption performance of a 

large distribution network in real time or to compare the post-disruption performance of a large 
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number of possible topological designs of a supply distribution network. The optimization solver 

is more appropriate if an in-depth analysis of a supply distribution network’s robustness is 

necessary. This is because computing topological metrics from the topology analyzer (polynomial 

time) is much faster than finding an optimal solution from the optimization solver (NP-hard). 

Using the topology analyzer also makes it possible for managers to use this tool beyond their own 

distribution network, because it is easier to collect data for an inter-form supply chain network’s 

topology than operational data at different firms (e.g., delivery cost and capacities of other firms). 

With topology analyzer metrics, a manager can get an estimation of how the firm’s supply chain 

network would perform if a disruption occurs. 

We demonstrated the efficacy of our decision support system through an example 

application of a retailer’s distribution network. Managers can perform scenario analysis and use 

this DSS to evaluate how different topologies affect the robustness of a supply chain network. 

Decision makers can perform stress tests of their supply chains through “what if” analyses by 

building and modifying supply chain networks [9, 11]. By doing so, decision makers should be 

able to ask questions like “what is the effect on our network when this node goes down?” or “what 

happens when an unexpected (random) disruption occurs?” These stress tests compare the 

performance of supply chain networks under multiple topologies and disruption events, which will 

enable decision makers to increase the network robustness. Although a firm does not often build a 

supply chain network from scratch, they do make frequent adjustments to respond to today’s 

dynamic global markets [34] and launch new initiatives in rebuilding their supply chain networks 

[19]. Thus, our DSS also allows a manager to adjust the topology of an existing supply chain 

network in many ways and analyze the effect of doing so.  
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In addition, this approach also enables managers to study how varying other parameters in 

a supply chain network will influence its robustness. Managers often underestimate or simply 

ignore the potential impact of disruptions in their supply chains. This DSS offers an interactive 

visualization, measurement, and optimization of the influence of disruptions and their mitigation 

through topological design. For instance, a user may specify a range of values or statistical 

distributions for supply/demand capacities, throughput capacities, as well as transportation and 

distribution costs. The performance evaluator can generate different weighted networks and 

optimization models for these parameter values and evaluate the different “what-if” scenarios 

corresponding to them. Also, by analyzing the removal of which nodes/edges produces the most 

impact, a manager can identify the most critical entities that should be fortified or protected. This 

decision support system fills a research gap in robustness and supply chain network design [9, 11]. 

A limitation of this research is the lack of automation in selecting the ideal topology. 

However, this limitation is partly due to the ontology of supply chain networks. While it would be 

ideal to allow the DSS to select the optimal network, very often network nodes and edges are 

selected for reasons that fall outside of linear parameters. For example, a specific supplier may or 

may not be selected based on some past experience or organizational knowledge. Organizations 

have been burned by single source suppliers, and create policies such as never to have less than 

two sources. It may also be that there is a strong personal relationship that exists between the 

decision makers of a supplier-customer business relationship that affects the topology of the 

network in spite of the inherent risks. Thus, we believe that a DSS as an aid for decision makers is 

the most appropriate approach to this complex problem. Instead of deriving the optimal topology 

based on the mathematical programming components of the DSS, we choose to provide a set of 

alternatives and let the decision maker perform what-if analysis with the DSS. The complex nature 
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of human decision making with subtle and often non-explicit constraints is what continues to drive 

the need for decision support systems over completely automated decision systems. Another 

limitation of this research is the focus on node-centric models. Supply chain networks may also 

suffer from disruptions in the links between nodes, such as rail strike, highway closure, air delay 

or closure due to weather or strike. Thus, supply chain managers would benefit by not only 

evaluating node failures, but also specifically link failures. There has been research in this area, 

specifically in the transportation domain [40, 50], and supply chain networks would benefit from 

these models as well. Finally, this research is limited to the context of transshipment and logistics, 

and thus is not generalizable to all networks. 

For future research, we would like to add additional constraints to the IP model in the 

optimization solver such as upper limits on the capacities of nodes or flows along edges to observe 

their effect on supply chain network performance and robustness. It would also be interesting to 

investigate supply chain network robustness via a link-based approach as well as measuring the 

assortativity of the network [15]. Additionally, as robustness is one component for resiliency, we 

envision an enhanced decision support system that would measure a supply chain network’s ability 

to recover to pre-disruption performance levels as well as the rate of recovery [62]. Lastly, real-

time event management would allow decision makers the ability to quickly respond to disruptions, 

and thereby reduce the impact of the disruptions. 
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Appendix: Pseudo-code for the RLR rewiring algorithm adapted from (Zhao, 
Kumar and Yen 2011). 

Given a supply chain network G(V, E) ; 
Given a rewiring probability pr and a rewiring radius dmax. 
foreach (edge 𝑒𝑒𝑖𝑖 ∈ 𝐸𝐸){ 
 𝑟𝑟𝑟𝑟𝑠𝑠 = 𝑅𝑅𝑎𝑎𝑟𝑟𝑠𝑠𝑅𝑅𝑅𝑅(0,1); // Generate a random number 
 If (𝑟𝑟𝑟𝑟𝑠𝑠 < 𝑝𝑝𝑟𝑟) {   
  𝑣𝑣𝑖𝑖(1) = endpoint 1 of edge 𝑒𝑒𝑖𝑖  (𝑣𝑣𝑖𝑖(1) ∈ 𝑉𝑉);  
    𝑣𝑣𝑖𝑖(2) = endpoint 2 of edge 𝑒𝑒𝑖𝑖  ( 𝑣𝑣𝑖𝑖(2)  ∈ 𝑉𝑉); 
  If degree(𝑣𝑣𝑖𝑖(1)) > degree(𝑣𝑣𝑖𝑖(2)) 
   Rewire(𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖(2)); 
  else if  degree(𝑣𝑣𝑖𝑖(2)) > degree(𝑣𝑣𝑖𝑖(1)) 
   Rewire(𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖(1)); 
  else if degree(𝑣𝑣𝑖𝑖(2)) == degree(𝑣𝑣𝑖𝑖(1))      
   Rewire(𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖(2)) or Rewire(𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖(1)). 
 } 
} 
Function Rewire (𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡){ 
  𝐸𝐸 = 𝐸𝐸 − {𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟}. 
 Identify Vr⊂V, such that ∀vj∈Vr, 0<distance(vtoKeep,vj)≤ dmax; 

 𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟 =Random(vj∈Vr); 
 If (𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟 ≠ 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡, and 𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟 ∉ direct neighbors of 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡 ){ 
   𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟= Connect(𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡, 𝑣𝑣𝑛𝑛𝑟𝑟𝑟𝑟); 
   𝐸𝐸 = 𝐸𝐸 + {𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟}. 

} 
} 
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